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the mark I1 system 

chapter 1 



. I 
I 

1 

The Mark II System 

The general character is t ics  of The Mark I1 Auto- 

m a t i c  Activation Analysis System have been presented i n  

an earlier report  from t h i s  Laboratory (1). This chapter 

gives a more detailed description of t he  logic c i r c u i t s  

governing the sequence of steps i n  the operations of the 

system, 

dendum t o  reference (l), and assumes a previous knowledge on 

the  pa r t  of the reader, of the general character is t ics  of the 

individual un i t s  of the Mark I1 System, 

Sample Selection 

The discussion is presented i n  the form of an ad- 

Figure 1 shows a block diagram of the sample 

select ion system. The sample number 00 i s  i n i t i a l l y  set 

i n t o  the X and Y scale-of-ten counters, and advanced one 

s t ep  when a new sample i s  desired, 

to the  magnetic tape uni t  for sample identification. The 

binary-to-decimal converter appl ies  a posi t ive voltage t o  

one of the scanning commutators of the X and Y axis. The 

X and Y scanning motors run u n t i l  the commutator encounters 

the posi t ive voltage, Th i s  releases the  relay, and the motor 

is magnetically braked t o  a stop, End-of-travel switches 

actuate relays t o  reverse the motor rotat ion when the scanner 

reaches e i the r  of the extreme positions, 

The 8-4-2-1 output is fed 

a 
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Master Control Unit 

Figure 2 is a block diagram of the Master Control 

Wnit of the system, The system may best be described by a 

step-by-step analysis of a typical program cycle, It may 

be assumed that the samples have been placed in the library 

and the operate switch S-1 is in the “off” position, 

Switches S-2 through S-10 are microswitches located on the 

pneumatic transfer boxes. (For a detailed description of 

the pneumatic system, see reference (11, chapter 7.1 

Figure 2 and the step-by-step discussion make use 

of the following abbreviations: e/ 
TB l--POS 1: Transfer Box l--Position 1; 

TOP, : Bi-stable Trigger Pair: 

m: a Circuit,‘ 

MeV.: Mono-stable multivibrator: 

AMP: Inverter amplifier; 

AM): AND Circuit, 



4 

8- 



5 

Step 1: W i t h  the switch i n  the "off" position, 

Vacuum C remains i n  the reset mode, and cannot turn on t o  

start the procedure, 

Step 2: Putting the switch i n  the "reset" p o d t i a n  

w i l l  reset a l l  the Trigger Pairs and w i l l  spring back t o  the 

"off" position. T h e  "reset" posi t ion of the switch w i l l  

also posit ion Transfer Boxes 1 and 2 

( N o t e :  TB 1 posit ion 1 T.P., and TB 2 posit ion 1 ToPo are 

triggered. Since Transfer Box 1 cannot be in posit ions 1 

and 2 simultaneously, then TB 2 posit ion 

TOP,, and TB 2 posi t ion 2 4 %  3 posi t ion 2 TOP. w i l l  be reset 

regardless of the posi t ion of Transfer Box 3.) 

t o  posit ions 1. 

2-TB 3 poeition 1 

0 

Step 3: It is assumed that the f i r s t  sample w i l l  

be selected manually, and the l o t  number and run number w i l l  

be set manually. 

indicating that the sample has been selected, then and only 

then w i l l  the input requirements t o  AND c i r c u i t  1 be 

sa t i s f ied ,  giving an output. 

When the X and Y motors have stopped, 

Step 4: If the switch is  i n  the "operate" position, 

and the AM) circuit 1 conditions have been sa t i s f ied ,  then 

Vacuum C ToPo w i l l  be triggered causing AMP C t o  conduct, 

energiz ng the relay,  causing Vacuum C a t  the l ib ra ry  t o  0 
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run u n t i l  Vacuum C TOP. is triggered again. 

Step 5 :  The vacuum cleaner w i l l  l i f t  t he  sample 

fram the library and w i l l  t r igger Alpha Trigger T.P. The 

tr iggering of A l p h a  Trigger will turn on Vacuum A, B, or 

AB, determined by the' position of the t ransfer  boxes. 

For the i n i t i a l  case, only AND 2 w i l l  be sa t i s f ied :  and the 

five-second M.V. A w i l l  be triggered, causing AMP BA 

to conduct, energizing the relay which turns on Vacuum A 

for f ive  seconds. T h i s  transports the sample t o  Detector 

can not be turned on A . Observe that AMP BA, BB, or 

by the AND circuits or the End-of-Live-The Trigger TOP. 

unless the appropriate Beta t r iggers  and analyzers are set 

i n  the proper position. Vacuum C is turned off by the 

AMP 

being applied to the OR c i r c u i t  4 which resets Vacuum C 

Trigger T.P. 

c i r c u i t  a t  the output of the Alpha Trigger T.P.'s 

Step 6: The sample w i l l  drop i n t o  the selected 

detector, (for example, Detector A ) and w i l l  t r igger  

BA Trigger TOP. 

i f  the coupler is not busy; and t h i s  is determined by "AND" 

c i r c u i t s  5, 6 ,  and/or 7 .  

This causes the following events to occur 

a. The Magnetic Tape Coupler is given Code A 
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(denoting the analyzer get t ing the sample), 

b, V i a  Amplifier 1 and OR 58 A l p h a  

Trigger is triggered, r e t u n i n g  it to  the steady s t a t e  

condition, 

to change 

c ,  The Magnetic Tape Coupler is instructed 

to  sample number. (The sample number, then the 

c l x k  time are l i s t e d  on the magnetic tape w i t h  the code 

letter A, 1 

d, via AMP 1, OR 5, and aR lo, Amplifier 

Select Sample w i l l  conduct, energizing the re lay causing the 

next sample t o  be selected: this starts the X and/= Y 

motors, thus keeping Vacuum C a t  the l ibrary  c u t  off. 
0 

e, AND c i r cu i t ,  a l l  analyzers busy, AND 

c i r c u i t  A busy, B busy, AB not busy have part  of their 

input requirements for  an output fu l f i l l ed ,  

f. Observe that the AND c i r c u i t  A busy, 

B not busy, and AB not  busy is the only AND c i r c u i t  that 

has its input requirements fu l f i l l ed ,  thus giving an output 

to CR c i r c u i t  6 which t r iggers  the five-second M.V. 2, 

This causes AMP Box 3 and AMP Box 2 v ia  Ow c i r c u i t  8 

t o  conduct, energizing the relays, and moving Transfer 

Boxes 2 and 3 t o  posit ions 2 and 1 respectively, T h i s  now 0 
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(Note: A m  * circuit A not busy, B not busy, and AB not 

busy has its input rer";iiiSiitatS satsified, and it will trigger 

the five-second M.V. 3 through c i r c u i t  7 which w i l l  trig- OR 

ger AMP Box 2 through -OR c i r c u i t  9 as discussed i n  step 30  

This has no e f f ec t  here since the transfer box was put i n  

posit ion 1 by the "reset" switch,) 

g. Analyzer A Trigger T-Po w i l l  be triggered 

through AMP 4 and CR 11, 

h, OR 12 W i l l  not be tr iggered a t  this t i m e  

because the signal is of opposite polar i ty  of that needed 

t o  ac t iva te  this OR c i r cu i t ,  
e 

io AM) 12  w i l l  not be activated u n t i l  an 

output is obtained from AMP 5. 

j. OR 20 w i l l  not be activated because of 

the opposite po lar i ty  signal obtained fran BA Trigger T.P. 

at this t i m e ,  

Ster, 7 :  The output from Pin E of P-2 of t he  analy- 

zer w i l l  be +10 vo l t s  when the l i v e  t i m e r  resets and 0 

vo l t s  when the l i v e  time has elapsed- 

SteD 8:  Analyzer A ToPo w i l l ,  v i a  OR 13, trig- 

ger the Readout Trigger A T-Po T h i s  output is applied t o  
0 
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Pin G P-2 of t he  analyzer to prevent it from reading out the 

memory, Also, Analyzer A T.P. w i l l  apply + l o  v o l t s  t o  

Pin F of P-2 of the analyzer, cawing it to accumulate data, 

Ster, 2: When the X and Y motors stop select ing 

the new sample, and the transfer  boxes are in the correct 

posit ion,  step 4 is repeated, 

Sten 10: The sample is t ransferred t o  Detector 

0 in the  same manner as the previous sample was transferred 

t o  Detector A 0 a repeat of steps 5 and 60 

S t e D  11: The tr iggering of BB Trigger T-P. w i l l  

perform the same tasks as did BA Triggel: T,P, 

a, 

bo Alpha Trigger T-P, is reset t o  a steady 

The Magnetic Tape  Coupler is  given Code Be 

state condition. 

C. The Magnetic Tape Coupler is instructed 

t o  change t o  sample number (code letter B). 

d, Selection is  made of the next sample. 

e. AND c i r c u i t  A busy, B busy, AB not busy 

has its input requirements sa t i s f ied ,  thus an output i s  

obtained and supplied t o  the five-second M,V, 1 which causes 

AMP Box 3 and AMP Box 2 via (X c i r c u i t  8 t o  conduct, 

energizing the relays: t h i s  causes Transfer Boxes 2 and 3 t o  
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move to posit ions 2, 

f ,  Analyzer 'B T.P. w i l l  be triggered 

through AMP 5 and 14, 

g. OBi 15 w i l l  not t r igger  because of signal 

polarity. 

h. AND 13 w i l l  not be activated u n t i l  the 

output frm AMP 7 is obtained, 

i. OR 20 w i l l  not be activated because of 

signal  polarity. 

Sten 12: 

SteP 13: 

R e f e r  t o  steps 8 and 9, 

When the X and Y motors stop select ing 

the  new sample and the transfer boxes are in the correct 

posit ion,  s t ep  4 is  repeated. 

S t e D  14: The sample is transferred t o  Detector 

AB as before. 

Step 1s: B m  Trigger TOP, w i l l  repeat the func- 

t ions  described in steps 7 and 12; but the code w i l l  be AB: 

a d  the AND 

Vacuum C TOP. reset so that no samples can be transferred 

since a l l  analyzers a re  now busy, 

circuit A busy, B busy, AB busy will keep 

Step 16: 

Step 17: 

R e f e r  to steps 8 and 9. 

The end of the live t h e  of Analyzers 
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A, B, and/or AB 5s determined by the ac t iv i ty  of the indi- 

vidual samples. 

most cmplicated form of operation, it is assumed that 

Analyzer B W i l l  complete its accumulation of data f i r s t ,  

then Analyzer AB 8 then Analyzer B , then Analyzer A . 

In an attempt t o  describe the system i n  its 

Steo 18: A t  the end of the l i v e  time, the voltage 

a t  Pin E of P-2 of Analyzer 

0 volts :  and this w i l l  be applied t o  AMD c i r c u i t  13 v i a  

AMP 7 t o  (St c i r c u i t  15. This in tu rn  t r i gge r s  the End- 

of-Live-Time B T.P., and turns off Analyzer 8 ToPo 

stopping the analyzer fran accumulating more data, AND 

c i r c u i t  9 determines i f  the Magnetic Tape Coupler is busy, 

and i f  not, the following events occur, 

B w i l l  drop from +10 volts to 

a, C o d e  B is  given t o  the Magnetic Tape 

Coupler. 

b, Transfer B o x  1 w i l l  go t o  posi t ion 2 i f  

Alpha Trigger T.P. is reset, T h i s  is accomplished by AND 

c i r c u i t  15. 

c. Transfer B o x  2 W i l l  go to posi t ion 2 

and Transfer B o x  3 w i l l  go t o  posi t ion 1 as determined by 

OR c i r c u i t  6.  

d, The coupler is inst ructed t o  change to 
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Live Time; and the coupler W i l l  list the live t h e  and the 

clock time on the magnetic tape. 

e, Vacuum % w i l l  turn on and run u n t i l  the 

End-of-Live-Time B TOP. i s  reset, (Note: Vacuum BB W i l l  

run only if Transfer Box 1 is in posit ion 2, and i f  Transfer 

Boxes 2 and 3 are i n  positions 2 and 1 respectively: this is 

controlled by AND c i r c u i t  B,) 

f, One signal is also applied t o  AND ch-  

c u i t  D;  thus no output is obtained a t  t h i s  time. 

Step 19: The running ofvacuum % w i l l  cause the 

sample t o  be l i f t e d  f r a n  D e t e c t o r  BB, and trigger BB Trigger 

TOP. Tbis w i l l  cause the following to  happen. 
0 

a, OR 20 w i l l  give an output t o  AND I) 

which w i l l  t r igger  the five-second M.V, 5 which makes AMP I) 

conduct. This causes Vacuum D t o  run for 5 seconds and trans- 

port the sample to the lead pig under the l i b r a r y  table, 

b. Analyzer B is no t  busy; but  since alpha 

is not triggered, the five-second MeV, B will not conduct- 

This may cause the five-second M,V, 2 to conduct, thus 

attempting to change Transfer Boxes 2 and 3 to posi t ions 

2 and 1 respectively; but  t h i s  is the correct posi t ion and 

no d i f f i c u l t i e s  are seen a t  this t h e .  
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I 

c, The End-of-Live-Time B TOP, W i l l  be t r ig -  

gered through OR 15; and this w i l l  cut  off Vacuum %' 

do Gamma tr igger T,P, w i l l  be triggered 

by CR 21  and aR 5 ,  which are activated by any of the  

B e t a  t r iggers ,  This indicates t h a t  the pneumatic system 

is busy transporting a sample t o  the lead pig from one of 

the detectors. 

Step 20:  When the coupler is  ready, a +10 vol t s  

signal from the coupler to C4? c i r c u i t  16 w i l l  t r igger  

Readout B TOP, and allow the memory of Analyzer B t o  be 

read onto magnetic tape, 

Step 21: When the sample f a l l s  i n t o  the  lead 

pig, Garr~na Trigger TOP, is reset, This t r i gge r s  the five- 

second MeV. 6 which causes AMP Box 1 t o  conduct and moves 

Transfer Box 1 t o  position 1. 

Step 22: When Transfer Box 1 ge t s  t o  position 1, 

Vacuum C w i l l  run again as described i n  s teps  5 and 6 ;  and 

the procedure is repeated, transferring the  sample t o  Detec 

t o r  Bg0 

Step 23: Assume tha t  while the sample is  i n  

t r ans i t ,  Analyzer AB completes its analysis, 

a, The Magnetic Tape Coupler w i l l  change t o  
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b. The End-of-Live-Tkne AB T.P. w i l l  reset 

Analyzer AB stopping the analyzer fran accumulating more data. 

C. AM) c i r c u i t  20, 21, and/or 22 w i l l  

prevent the t ransfer  boxes from changing while the sample is 

i n  transit. 

Ster, 24: After the sample is  dropped in to  D e t e c -  

t o r  B, and BB t r igger  TOP, has reset Alpha Trigger T.P., the 

sample a t  Detector AB w i l l  be transported back t o  the 

lead pig as described before. 

Ster, 2%: If the coupler is busy with the data 

of Analyzer: AB, the accumulation of data by Analyzer B Will 

be prevented, and no new sample w i l l  be selected. This is 

determined by AND c i r c u i t  6 .  

Step 26: The above procedure W i l l  repeat u n t i l  the 

samples are depleated, or the switch is turned to the”off” 

position. 

Ster, 2 7 :  A s s u m e  tha t  immediately after Analyzer B 

has completed its accumulation of data, Analyzer A completes 

its analysis. ( N o t e :  A sample is  in the pneumatic system 

going from Detector B to the lead pig under the l i b r a r y  

table; and the memory of Analyzer B is being listed on the 

magnetic tape. R e c a l l  i f  the tape coupler is busy, the 
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output from the End-of-Live-Time A T.P. will be delayed 

by AND circuit 8, When the Magnetic Tape Coupler is no 

longer: busy, the output fran 7 will be delayed by AM, 

circuit 20 until Gamma Trigger TOPO is reset, indicating the 

pneumatic system is not busy, 

sion i n  Step 24-c.) 

This is similar to the discus- 
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SECTION I 
Count-Test Standard Analysis 

Long half-life radioisotspes were packaged in 

sample containers like those used i n  activation ana lys i s  

and counting procedures employed i n  the automatic system, 

These samples are used i n  tests on the precision and relia- 

b i l i t y  of the analyzer and p r i n t  out of the Mark I System, 

Data collected using these samples w e r e  processed through 

t h e  automatic mode ,  including Computer computation of re- 

su l t s .  The r e su l t s  of the f i r s t  series of samples processed 

i n  t h i s  manner are shown i n  Tab le  I, e 
b 

Table I, Computer Solut ion of Count T e s t  Standards (Long 

Sample % of Library._Standard Recovered 
NWIlbfX Run 1 Run 2 Run 3 Averaqe 

H a l  f-Li f e--Long I r radiat ion 1 

- cs .Mn cs m c s  &!!.&I 7 cs - Mn 

,003 0,003 -- 0 ,002 0,002 ,004 0,005 -- 
2 ,094 2,470 ,086 2,470 -- -- ,090 2,470 

3 ,700 0.710 ,570 0,980 ,680 0,850 ,660 0,850 

4 ,900 0,005 ,760 0,005 ,840 0,005 ,840 0,005 

6 ,062 1,500 ,066 1,370 ,062 1,500 -063 1,460 

8 ,830 0,005 ,830 0,004 ,830 0,005 ,830 0,005 

9 ,083 1,830 ,120 1,720 -- -- ,100 1.780 

0 12 ,110 2,000 .230 0,720 0- -- ,170 1,350 

13 ,740 0,690 ,680 0,780 ,690 0.550 ,700 0,640 

14 ,084 2,150 ,077 2,400 ,080 2,230 ,080 2,260 
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Radioisotopes used w e r e  cesium-137, w i t h  a half- 

l ife of 26.6 years and a principle Ey = 0.662 M e v ,  and mangan- 

ese-54 w i t h  a half-life of 290 days and Ey of 0.84 MeV. 

The samples w e r e  prepared by pipeting quant i t ies  of the 

individual isotopes in to  capsules made f r o m  1/4-inch 0, D, 

polyethylene tubing. The solvents were removed by evapor- 

a t ion  under infrared heat lamps, and the capsules were 

collapsed and sealed u s h g  heat. 

was then placed i n  a standard sample container: and the 

v ia l  was f i l l e d  w i t h  casting p l a s t i c  and capped. 

duced a sealed source which could be cycled through the 

automatic system, and insured r e l a t ive ly  long service from 

the counting standards, 

and of mixtures of the t w o ,  w e r e  prepared, 

The first attempt to process &e data through the 

The polyethylene capsule 

This pro- 

Samples of the individual isotopes, 

computer using the AA-4 program failed. 

w h e r e  1 is the decay constant and t a  is the act ivat ion 

the ,  approached zero: and the computer was not  able to 

produce a numerical solution. The activation t i m e  in t ro-  

duced in to  the computer was adjusted a r b i t r a r i l y  to ap- 

proximately one year: and the data processed normally. 

The re su l t s  i n  T a b l e  f indicate that blanks such as 

The term (l-eoAta), 
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Sample 0 were reported as f ract ions of less than 1/100 

of the r e s u l t s  of the radioactive standards, The data from 

four samples were l o s t  due to errors in data transfer from 

the analyzer system to  the computer, Otherwise, the r e s u l t s  

of repeat runs agreed within la%, except i n  the analysis of 

Sample 12, run 2, The data f o r  this sample were examined 

later, and there is a four-channel s h i f t  i n  the photopeak 

channel locations, 

an unexplained s h i f t  i n  the high voltage, or a f au l ty  p r i n t  

out of the data. 

This apparently was caused either by 

The next attempt to process data collected fmra 

the  samples was run in January, 1963; and the automatic 

nature of the system l i m i t e d  the  i r rad ia t ion  time to  the 

ac tua l  time elapsed fraa the first of the year, The half- 

l ife f o r  cesium was a l te red  t o  the  same value as for MnS4, 

i n  the input t o  the computer l ibrary:  and the data processed 

normally (Table 11). The resu l t s  indicate a change of t w o  

orders of magnitude 

magnitude i n  the manganese blank, 

themselves within lma except fo r  the  cesium content of 

samples 78 8 ,  and 9, runs 3. This was caused by a temporary 

f a i l u r e  of the  upper leve l  d r i f t  control  of the analyzer, and 

was corrected before Sample 14, run 3 was recounted. 

i n  t h e  cesium blank and one order of 

The data  agreed among 
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Table 11, Computer Solution of Count T e s t  Standards (Short 
Half -Life--Short Irradiation) 

Sample 
Number Run 1 Run 2 Run 3 Average 

% of Library Standard Recovered 

- =s - Mn c s  - Mn - Mn c s  - Mn =s - 
0 0.26 0.05 0-29 0.07 0.24 0.06 0-26 0.06 

2 0.18 1.59 0.15 1.45 -- 'I.... 0.16 1.52 

3 1.18 0.43 1.03 0.40 1.05 0.39 1 - 1 2  0.41 

4 1-58 0.06 1.48 0.06 1.35 0.06 1.47 0.06 

5 0.25 0.52 0.24 0.49 0.24 0-48 0.24 0.50 

7 1-48 0.32 1.33 0.30 1-10 0.31 1.30 0-31 

8 1.58 0.06 1.52 0.06 1.15 0.06 1.40 0.06 

0.17 1.39 9 0.15 1.35 0.18 1.43 e- -- 
0 10 1.35 0.44 1-27 0.42 1.14 0.40 1-28  0-42 

3.4 0.14 1.46 0.15 1-40 0.14 1.23 0.14 1.36 

I n  conclusion one may s t a t e  t ha t  the automatic 

system is able to resolve the gamma-ray spectrum of single 

and mixed radioisotopes w i t h  re la t ive ly  long half-lives, 

with a precision of 10%. The v e r y  long ha l f - l i fe  of the 

isotopes used tended to cause large variations in the r e su l t s  

due to  sens i t iv i ty  of the relationship between the decay 

constant and the activation the  used. 
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SECTION I1 
Silver  Analysis 

Ion migration i n  l iving biological systems is 

currently under investigation a t  the A, and M. College of 

Texas, As part of this program, the Radiobiology Group is 

studying the influence of radiation on ion migration in mice, 

S m a l l  amounts of s i lve r  n i t r a t e  are fed to mice l iving i n  

varying fluxes of cobalt-60 radiation, 

vals ,  the mice are sacrificed and brain t i s sues  are examined 

for  s i l ve r ,  

A t  regular inter-  

The relationship between radiation dosage and 

s i l v e r  migration t o  the brain tissue of these animals is  

being studied, 

developed a procedure t o  analyze these samples, and is 

working w i t h  the Radiobiology group on t h i s  project. 

The Activation Analy8is Research Laboratory 

The determination, by radioactivation, of s i lve r  in 

submicrogram amounts in biological samples has been reported 

by Tobias et&, (1952); 

trace amounts of s i lve r  was reported by Okada, ( l % O ) ,  

and a non destructive analysis of 

The study reported here u t i l i zed  the 24.2 second 

ha l f - l i f e  silver-110, The samples and standards w e r e  

packaged in 2/5 dram polyethylene v i a l s ,  dryed under infra- 

red lamps, and placed i n  polystyrene transport vials .  The 

i r rad ia t ion  and data acquisitions were performed in the  

Mark Ia System. Samples were irradiated in the pneumatic tube 
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i n  a thermal f lux  of 6x1Ol1 n cmo2 sec” for 24 seconds. 

They w e r e  then transported to the three-inch w e l l  c r y s t a l  of 

the  pulse-height analyzer, and counted fo r  30 seconds l i v e  

t i m e  after a 20-second decay, The gamma-ray spectrum of 

Sample A2, containing 0.5 ug of s i l v e r  i n  a rat  brain homo- 

genate, is shown i n  Figure 3. The curve labeled I re- 

presents the spectra accumulated immediately a f t e r  i r radia-  

tion: and C u r v e  11 i s  the spectra of that same sample a f t e r  

the 24-second s i l v e r  had decayed away. The photopeak 

counts associated with the 0,656 MeV gama-ray were totaled. 

The data were then calculated to a uniform activation: 

w a i t  and count t i m e ,  and a standard curve were prepared e 
relating corrected photopeak counts t o  micrograms of silver. 

The calibration curve is shown i n  Figure 4 

The r e s u l t s  of repeated analyses on four samples 

of brain homogenate are shown i n  TableLIf. 

Tab le  111. Si lver  Determination i n  R a t  Brain Homogenate 

vg Silver  Found 
Run 1 R u n  2 Run 3 

Weight PPM Ag Sample No. Sample W t .  

4.7 0.2172 g. 0.98 1.04 -- A 1  
0,0854 g. 0.53 0.54 0.61 6.6 

B3 0.2311 g. 1.02 1 - 1 2  0.85 4.1 
A 2  

E4 0.2116 g, 0.88 0.82 0.89 4.1 
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a When s i l v e r  is i r radiated in a thermal neutron 

flux, three radioactive nuclides are produced, Each  of these 

nuclides gives rise t o  ganana-rays w i t h  energies near 0,656 

MeV, 

0,676 )rleo gamma-ray only 0.2% of the t ime .  

gamaaa-ray from the beta decay of silver-108 occurs only 1% 

of the time, These, combined with a longer ha l f - l i f e  and 

smaller act ivat ion cross sections of silver-107, keep the 

gamma-ray contribution of silver-108 in t h e  range of in te res t ,  

to less than one percent of that due t o  silver-110, The 

radioactive decay of silver-ll0m produces 0.656 Mev, and 

several  other gamma-rays that would tend t o  interfere:  but 

the 270-day half-life and r e l a t ive ly  small cross section for 

the reaction limits the interference from this nuclide t o  leas 

than one percent, There was no evidence of interference from 

other elements found i n  brain t i s s u e  specimens w h i c h  would 

cause an error greater  than one percent. 

Positron decay of 2.3 min-silver-108, produces a 

The 0.63 MeV 
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SECTION SIS 
Selenium Analysis 

The determination of selenium i n  submicrogram 

quant i t ies  by radioactivation analysis u t i l i z i n g  thermal neu- 

t rons and gamma-ray spectroscopy was undertaken i n  response 

to a request from Dr, X, Schwarz, of the N, I, H. 

matrix of i n t e r e s t  includes a l l  forms of animal t i s sues  

and fluids.  

mens of urine and blood: and they were processed with no 

preliminary concentration or radiochemical treatment. 

The sample 

The samples reported here were one m l  speci- 

Radiochemical separations for  selenium have been 

reported i n  the  l i t e r a tu re .  Selenium has been determined 

h high pur i ty  metals, A l b e r t ,  ( i % O ) - - = l f U ,  phosphorous, 

ores, and slags, as w e l l  as biological materials, Schwarz, 

(1958). 

t o  lXlOo3 CI grams, depending on the neutron f lux  available, 

The reported s e n s i t i v i t i e s  range from 50 v grams 

The determination reported here is based on Se 37m 

w i t h  T of 17.5 seconds and % of 0,165 Mev. 
and standards were packed in l iqu id  form i n  polyethylene 

v i a l s  which w e r e  sealed by fusing the caps t o  the vials. 

act ivat ions were performed i n  the pneumatic tube of the 

The samples 

The 

swimming pool reactor. 

m o d e  of the Mark Ia System.(described in detail i n  the las t  

annual report of the  Activation Analysis Research Laboratory) , 

Samples were processed in the automatic 
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This system s to re s  up to  100 samples i n  geometrical array, 

selects them one a t  a time, and t ransports  them i n t o  the 

reactor f o r  act ivat ion f o r  a pre-set time, It then recalls 

the sample, counts it for a pre-set time, and returns  it to 

a starage fac i l i t y .  

and includes the sample ident i f icat ion,  act ivat ion t i m e ,  

w a i t  time, count t i m e ,  and the accumulated gamma spectra of 

the sample. 

begins again with it, 

d i g i t a l  computer which resolves the gamraa-ray spectra by 

comparison to a previously prepared set of l i b r a r y  standard 

spectra, and p r i n t s  out a quantitative analysis  for each of 

the elements represented i n  the l ibrary,  

The data is read out on fBM punch cards, 

The system then  advances to  the next sample and 

The data may then be processed by a 

The sealed samples w e r e  placed in polystyrene 

transport v i a l s  and activated fo r  24 seconds i n  a thermal 

neutron f lux of 6x1011 n crao2 sec'l- They were recalled and 

counted for 20 l i v e - t h e  seconds a f t e r  the minimum w a i t  time 

avai lable  in the automatic system, generally 18 t o  20 seconds. 

The data were printed out with an IBM 401 canputer and plot ted 

t o  facilitate the location of the 0.165 M e v  photopeak. 

photopeak counts of the channels indicated were totaled. 

The data were then reduced t o  a uniform act ivat ion,  w a i t ,  and 

The 
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count time. A calibration curve was prepared (Figure 5 )  

from a series of selenium standards, and the quantity of 

Lelenium i n  the samples was determined by interpolations from 

this curve (Table IV). 

T a b l e  IV. Determination of Selenium i n  Biological Samples 

Sample crg Selenium Found 
Ident i f ica t ion  Run 1 Run2 Run 3 R u n  4 A- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.01 
0.06 
0.36 
0.47 
0.22 
0.26 
0.31 
0.14 
1.36 
0.31 
0.07 
0.29 
0.25 

0.01 
0-01 
0.26 
0.32 
0.27 
0.11 
0.22 
l o s t  
1.75 
0.35 
0.04 
0-36 
0.08 

0.00 
0.00 
0.31 
0.25 
0.17 
0.15 
0.38 
0.20 
1.50 
0.43 
0.00 
0.51 
0.18 

0.01 
0.01 
0.20 
0.50 
0.06 
0.11 
0.26 
lost  
lost  
0.43 
lost 
0.30 
0.10 

0.01 
0.02 
0.28 
0.30 
0.23 
0.16 
0.29 
0.17 
1.54 
0.38 
0.03 
0.36 
0.16 

The conversion of se76 t o  Se 77m has a cross 

section fo r  thermal neutron activation of 7 barns and Se76 

ha8 an isotopic abundance of 9%. The isameric t rans i t ion  of 

~ e 7 ~ ~  to Se7’ has a single gamma-ray w i t h  Ey of 0,165 Mev. 

This energy range of the gama-ray spectrum is almost 

I free of interference from other radionuclides with half-  

1 l ives ,  cross sections, and gamma-ray energies i n  this range. 
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The pr inc ip le  interference encountered was from 01’ w i t h  T 

of 29.5 seconds and Ey of 0.200 Mev, 

i n  one ml of water, the photopeak counts from the 01’ and 

the are approximately equal. Figure 6 is a repre- 

sentation of the garmna-ray spectrum i n  the region of i n t e r e s t  

showing the re lat ionship of the two photopeaks, 

A t  0.5 vg of selenium 

A s  can be seen fran TableIV the precision between 

repeat analyses of the same sample is within 0.2 vg. 

The samples reported here are human body f lu ids ,  urine, and 

blood, to which increments of selenium were added. We 

have not yet  been informed as t o  the actual  selenium concen- 

tration added t o  these samples, and are not able t o  evaluate 

the absolute accuracy of the method from these data, A 

continuation of this study is currently underway. I 
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SECTION I 
Introduction 

Development of the problem of remote lunar analysis  

The principle  con- was discussed i n  Chapter 10, TEES-2671-2, 

clusions to be drawn from t h a t  preliminary study were: 

(1) 

cable to  f ive  of the elements generally thought t o  consti- 

t u t e  the lunm matrix: (2) approximately los neutrons/cn? 

would be needed t o  produce analyt ical ly  s ign i f icant  nunbers; 

(3) 

detect ion c rys t a l  shield could coll imate the radiat ion from 

the sample surface and the density could be determined; and 

(4) 

measure the longer l ived  product radioisotopes, 

conclusions w e r e  made from data obtained by irradiating 

simulated lunar samples containing aluminum, i ron ,  magnesium, 

oxygen, and s i l icon,  w i t h  D-T neutrons, 

t i v i t y  was measured by a gamxna-ray spectrometer system 

after the samples were transported to a 3 5 ~ 3 "  NaI(T1) detec- 

tor. Neutron f luxes up to 5x10~ 14+ ~ e v  n/an'/sec were 

used in this investigation, 

fast neutron act ivat ion analysis  techniques were appli- 

quant i ta t ive analysis could be obtained i f  the gamma-ray 

counting times of 10 t o  30 minutes are necessary to 

These 

Induced radioac- 

This chapter describe8 a continuing effort of the 

Activation Analysis Research Laboratory i n  the area of remote 
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lunar analysis, A first generation remote activation analysis 
0 

system is desdribee and the results from the analysis of 

simulated lunar samples are given, These samples were  pro- 

cessed in a geometrical configuration similar to what is 

expekted oh a c t ~ l  lunar exploration 
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SECTION I1 

Equipment and Experimental Procedures 

R e m o t e  Analysis System-A small, remotely operated 

act ivat ion analysis system was designed and b u i l t  t o  analyze 

samples i n  a f l a t  geametry, The system, consisting of a 

neutron source, collimated sc in t i l l a t i on  detector, and a 

control  mechanism, is mounted together on an H-frame, The 

frame pivots i n  the center, In the i r rad ia t ion  m o d e ,  the 

neutron source is pointed toward the sample, and is physi- 

ca l ly  located about one centimeter away, A t  the  end of 

a pre-set time, the control mechanism pivots  the  detector 

i n  the precise location formerly occupied by the neutron 

source, Radiation from the previously i r rad ia ted  sample 

is detected and hard-lined t o  a multi-channel analyzer 

0 

located a t  a distance of 80 feet frm the system. 

Kaman Model A-702 Neutron Generator is used as an 

i r rad ia t ion  source, 

deuterium ions a t  energies of 140 Kev onto a titanium- 

tr i t ide ta rge t ,  Under the conditions that t h i s  generator 

operates, the reaction I f  (Ha ,n)He4 produces greater than los 

neutrons/second a t  the  target. 

potent ia l ,  and is located approximately 0.1" from the end of 

the accelerator uni t ,  A control un i t  provides operating 

Neutrons are produced by accelerating 

The target i s  a t  ground 
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power for the accelerator and automatic control of pressure 

i n  the tube, 

i n  the same housing as  the ion source and target, 

The accelerating high-voltage supply is located 

A 3"x3" HaI (Tl)  s c in t i l l a t i on  crystal ,  photamrl- 

tiplier tube, pre-amp, and lead collimator const i tute  the 

detector assembly. Figure 7 shows the construction details 

of the collimator, 

volume of this device are shown i n  Figure 8 ,  

The collimating effect and s e n s i t i v i t i e s  

The control mechanism provides a pre-programed 

sequence, which locates the accelerator a t  the sample, 

ac t iva tes  the neutron source for a,pre-set  t i m e ,  shu ts  off 

- the neutron source, ro ta tes  the assembly t o  place the  detec- 

t o r  a t  the radioactive site, and ac t iva tes  the multi-channel 

analyzer, The rotat ion time is approximately 10 seconds. 

An a i r c r a f t  hanger, 140'x160', a t  the T e x a s  A. and M, 

Research and Development Annex was used as the i r rad ia t ion  

site, The H-frame assembly was mounted on steel legs over 

a 6-foot diameter, sand-filled tank. Samples for analysis 

w e r e  placed i n  a l*xl 'x8" polyethylene box in the  center of 

the tank, 

lunar system a s  it is mounted on the tank, 

a photograph of the camplete assembly, showing the posit ion 

of the sample re la t ive  to the neutron source, 

Figure 9 shows a cutaway drawing of the remote 

Figure 10 is 

0 
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Simulated Lunar Samples-Reagent grade samples of 

aluminum oxide (AlaOa 1, ferric oxide (FezOa ) , magnesium oxide 

(MgO), and s i l i con  dioxide (Si%) w e r e  analyzed separately 

and in a var ie ty  of blends, Mixing was accomplished w i t h  

the a id  of a small cement mixer, 

used t o  keep m o i s t u r e  absorption t o  a minimum, Tab le  V 

Polyethylene sheeting was 

lists the  composition of the  samples used i n  t h i s  experiment. 

Experimental Procedure-Samples, w i t h  varying 

amounts of AlzOa ,  FeaOB, MgO, and S i% w e r e  placed i n  a 

measured polyethylene box and weighed. 

calculated from the known volumes and w e i g h t s ,  

ethylene boxes were then placed i n  the center of a large 

sand-filled tank (see Figure 10). Constant i r rad ia t ion  

geometry was maintained by centering the samples d i r ec t ly  

under, and a t  a constant distance from the accelerator un i t  

Densities were  

The poly- 

of the lunar system, I r radiat ion times of f ive  minutes; 

and counting times of 10 minutes w e r e  used for  a l l  samples. 

Detected radiat ion was analyzed w i t h  a 400-channel transis- 

torized analyzer, 

uously during the counting operation, 

Analyzer dead time was recorded contin- 

Photopeak counts for  

the various cmponents were taken from a p l o t  of channel 

number-versus-activity, Spectrum str ipping techniques w e r e  



used to resolve peaks containing act iv i ty  from more than 
0 

38 

one radioactive source. 
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SECTION I11 
Results 

Aluminum Analysis-Irradiation of aluminum w i t h  

14+ Mev (D-T) neutrons produces 9-45 min. magnesium-27, and 

14-97 hr. sodiuro-24, by the Ala7(n,p)Mg27 and A l a 7  (n,a)Naa4 

reactions, respectively. Same 2-27 m i n .  aluminum-28 is  also 

produced i n  large samples b y  the Ala7(nrY)Al2* reaction. 

The gamma-ray spectrum of fas t  neutron irradiated aluminum (Fig- 

ure 111 shows thatthe principle gama photon occurs a t  

0.834 Mev, 

for f lux  var ia t ions and analyzer dead time, T a b l e  V I  shows 

Photopeak counts a t  t h i s  energy were corrected 

the precision obtained i n  the analysis of aluminum. 

is the only interference i n  the five-element matrix- 

Iron 

0 
Iron Analysis-Irradiation of i ron w i t h  14+ Mev 

(I)-T) neutrons produces 2.58 hr. manganese46 by the 

FeSs (n,p)MnS6 reaction. 

neutron irradiated iron (Figure 12)  shows that the principle  

garrnna photon OCCUIS a t  0.845 MeV, Photopeak counts at this 

energy were corrected for flux var ia t ions and a n a l y z a  dead 

time, 

of iron, Aluminum is the  only interference i n  the five-element 

matrix. 

The gamma-ray spectrum of fast  

Table  V I 1  shows the precision obtained i n  the analysis 

Iron w a s  also analyzed using the 1-81 Mev gamma 

A delay time of 2 1  minutes was photon from manganese-56, 0 
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employed t o  eliminate the interference from aluminum-28 

T a b l e  VIII shows the precision obtained i n  this analysis, 

Maqnesium Analysis-Irradiation of magnesium w i t h  

14+ Mev (D-T) neutrons produces 1.0 min, sodium-25, 14.97 hr. 

sodium-24, 9.45 min, magnesium-27, and 40.2 sec, neon-23 by 

the Mga6 (n,p)Naa6, Mg'* ( ~ , p ) N a ~ ~ ,  Mga6 (n,Y)Mg", and Ms " (n, a)Ne"= 

reactions, respectively, The gamma-ray spectrum of f a s t  

neutron i r radiated magnesium is shown on Figure 13, Because 

of the  complexity of the decay products and the small 

photon yield per neutron, the 2,75 Mev gamma photon of 

sodium-24 was used for  analysis of magnesium. Photopeak 
a 

counts at t h i s  energy were corrected for  flux variation and 

analyzer dead the, T a b l e  M shows the precision obtained 

i n  the analysis of magnesium. Aluminum is the only in t e r -  

ference i n  the five-element matrix. 

CJxwen Analysis-Irradiation of oxygen w i t h  14+ 

Mev (D-T) neutrons produces 7.4 sec. nitrogen-16 by the 

0" ( n , p ) f "  reaction, The gamma-ray spectrum of f a s t  neutron 

irradiated oxygen (Figure 14) shows t h a t  the principle.gmnta 

photon occurs at 6.1 MeV. Since none of the other four 

elements y ie ld  high energy photons, a l l  counts above 4 MeV e 
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- 
w e r e  counted as a function of the oxygen content. Total 

counts above 4 Mev &re corrected for  background, f lux 

var ia t ions,  and analyzer dead t h e .  T a b l e  X shows the  pre- 

c i s ion  obtained in the analysis of oxygen. 

Silicon Analvsis-Irradiation of s i l i con  w i t h  

14+ Mev (D-T) neutrons produces 2.3 min. aluminum-28 by the 

Si2’ (n ,p )Al”  reaction. The gamma-ray spectrum of fas t  

neutron i r rad ia ted  s i l i con  (Figure 15) shows t ha t  the  

pr inciple  gamma photon occurs a t  1.78 Mev. Photopeak counts 

a t  t h i s  energy were corrected for  f lux  var ia t ions and analyzer 

dead time, 

analysis  of s i l icon,  

T a b l e  XI shows the precision obtained in the 

Aluminum is the  only interference in 0 
the f ive-element matrix. 

Flux Measurements-Neutron production w a s  measured 

w i t h  copper fo i l s .  Prior t o  each determination, a standard 

copper f o i l  was taped to  the t a rge t  end of the accelerator 

unit ,  

measured in a constant-geometry G-M counting system, 

Measured ac t iv i ty  of the fo i l  i n  Run 17 was taken as unity. 

A t  the  end of each i r radiat ion,  the copper f o i l s  w e r e  

Fo i l  measurements of the other determinations w e r e  corrected 

t o  Run 17. Absolute f lux measurements w e r e  not  made. 

Approximations using a standard sodium-22 source t o  check 
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counting efficiency and 120-minute delay counting to  remove 

the copper-64 contribution of the 0 , S l  MeV andihilation 

peak, gave flux measurements of 5x106 n/cin'/sec a t  the 

sample, The matjditbde af fl& valtiations is  listed in 

0 



SECTION N 
Conclusions 

Fast neutron irradiatim of alumhum, iron, mag- 

n e s i u m ,  oxygen, and s i l icon systems yields gamma-ray spectra 

(Figure 16) w h i c h  can be resolved in to  e l e m e n t a l  cagnponents 

w i t h  a 400-channel scintillator spectrornetcr. Total counts 

i n  the 0.84 Mev, 1.0 Mev, 1.8 MeV, and 2.75 Mev photapeaks, 

measured i m m e d i a t e l y  after the  irradiation and after a 21- 

minute delay, provide the following quantitative relationships: 

d A o / g r a m  0 = Ao a t  4 t o  7 Mev ( t w  = 0.2 rain.): 

a Ao/gram A 1  + b Ao/gram Fe = Ao a t  0.84 

Mev ( t w  = 0.2 min.); 

a A o / g r a m  A 1  + c A o / g r a m  Mg = A' a t  1.0 MeV 

( t w  = 0.2 min,) : 

a A o / g r a m  A 1  + b A o / g r a m  Fe + c A*/gram M g  = 

A' a t  1.8 Mev ( tw  = 0.2 min.); 

a A o / g r a m  A 1  + c Ao/gram M g  = Ao a t  2.75 MeV 

(tw = 0.2 m i n . ) :  

a A o / g r a m  A 1  + c A o / g r a m  Mg = A' a t  2.75 MeV 

( t w  = 21  min, ) : 

b Ao/gram Fe = A' at  1.8 MeV ( t w  = 21 min.) : 
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w h e r e  : 

a = grams aluminum, 

b = grams iron, 

c = grams magnesium, 

d = grams oxygen, 

d = grams s i l icon ,  

Ao = photopeak counts corrected for  f l u x  var ia t ions 

and analyzer dead t i m e ,  and 

Ao/gram = a constant for  a given set of i r rad ia t ion  

conditions. 

Uti l izat ion of a collimated detector provides a 

defined sens i t ive  volume of radioactive material from an 

inf ina te ly  large sample. 

density, sample masses can be calculated. Once Ao/gram has 

been determined fo r  each element, mixtures can be analyzed 

using these constants, as long as the i r rad ia t ion  conditions 

remain the same, A summary of the determinations listed i n  

Tab le  XIS shows t h a t  acceptable quant i ta t ive information is 

available by this technique as long a s  radiation times, de- 

tec t ion  times, flux, and geometry are careful ly  controlled. 

0 
Fram the known volume and a m e a s u r e d  
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Cut-away Side V i e w  

Figure 7 ,  Lunar Analysis System C o l l i m a t o r  
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Collimator Map Mn64 Ey = 0.84 MeV 
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Figure 8. Collimating Effect of the Lunax Analysis System 
Collimator 
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Figure 9. Cut-away Skekh of the Lunar Analysis System 
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Figure  10. Lunar Analysis System 
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i o  

10' I 

i 
:10 

~ 

IRON 

SUM PEAK 

-8 1-2  1.6 2 - 0  2.4 2.8 
ENERGY (MeV) 

REACTION CROSS-SECTION (as) 
I Fe54 (n, 2n)Fes3 15 
I1 FeS6 (n,p)m56 150 

XALF-LIFE 
8.9 min, 
2.58 hr, 

Irradiation Time: 5 min, 
Counting The: 20 min. 
Photopeak Counts--Gram-blO8n ciu-*secol: 11 3 &IO5 
Interferences: 

~ n 5 5  (n, Y 
(n, a)Mn 

Figure 12. Spectral D a t a  for Fast Neutron Irradiated Iron 
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Figure 13, Spectral  Data for Fast Neutron Irradiated Magnesium 
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T a b l e  v. Composition of Simulated Lunar Matrix Samples 

Sample Density Percentage Composition 
% A 1  96Pe 9 6 -  % O  %Si 

1,339 52.95 -- -0 47.06 - 
0.759 52.95 69.96 - 30.06 -0 

0,587 0- -- 60.31 39.69 -0 

0,937 -- -- -0 53-33 46-64 

A l a  0, +S i0, 1.193 34.03 -- H 49.30 16.68 

Fea%+MgO 1,077 -- 46.61 20.15 33-27 - 
AlaOa+FeaQ+MgO 1.174 15.84 32.71 14.14 37-39 -0 

AlaOa+Pea~+MgWSio, 1.296 11.57 12.04 5.17 46.78 24.38 a 
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